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Using the linearity of the term 0,0, we will deduce a new formula for the calculus of the fracture strength for
composites with randomly dispersed fibres. This formula will depend on the reinforcement volume fraction.
Using the mean values for longitudinal and/or transversal modulus, with respect to the rotated reference
system, we will obtain an original relation for the calculation of the elasticity modulus for composite plates
with a randomly dispersed reinforcement. We preferred to write this relation in a similar manner o the one
used for the failure strength, using the linearity related to /E,E, . Experimental determinations were made
for three sets of samples obtained from composite plates with various mass fractions of reinforcement,
confirming thus the theoretical results obtained by the authors.
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Depending on the reinforced material or resin used,
composite materials allow us to obtain a diversity of
mechanical properties. This fact makes it difficult to
determine the mechanical characteristics function of the
fibres-matrix ratio of the composite. The existing theories
outlined the composites as homogeneous, generally
anisotropic, where the material constants are obtained in
relation to the properties of the constituents. Good results
are generally obtained in static problems, but serious
deficiencies occur in the case of vibrations, especially due
to the attenuation effect which was observed in the case
of composite materials.

Only some theories have a solid theoretical background
for determining the characteristics of the composite
materials. The theoretically obtained results correspond
more or less to those obtained experimentally. Irrespective
of the theory applied, the results describe the mechanical
properties corresponding to the basic physics principles.
Therefore, a tensile stress will lead to an elongation
following the stress direction, and a uniform compression
cannot lead to an expansion/dilatation of the material. We
cannot give credibility to any result contradicting even partly
these elementary truths.

A frequently used theory is the blends theory, based on
an elementary similitude with the blend of gases, where
the constituents coexist, each exercising its own partial
pressure. With the observance of composite structure, the
constituents are presumed heteronymous in space, each
one having individual deformations. The laws of the blends
can be easily formulated, but the main problem of the
application of the theory of the blends in the case of the
composite blends is the analytic specification of the
interactions of constituents and of the constituent
equations for the blend, being known the geometrical
distribution and the constituent equations for every
individual constituent.

Using the theory of blends in [1] simple relations are
determined, which lead to good results for Young’s modulus
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and Poisson’s coefficient along the fibres. For the other
elastic coefficients it is suggested a relation which has the
disadvantage to depend on a parameter which
characterizes the interaction fibres-matrix, the geometry
of the fibres, their arrangement, and which must be
determined empirically. The extreme values for the elastic
modulus were determined in [2, 3] in the case of the fibres
randomly distributed and with different diameters, but
having a given volume fraction.

In [4] is presented a model which enables the
calculation of the shear modulus using a mathematical
transcription of the interaction fibre-matrix and
simultaneously taking into account the differences
between the arrangements of the fibres over two different
directions of the composite section. This model is used in
[5] in order to make a micro-mechanical analysis for the
components of the composite and its behaviour. This
method has the advantage of generating the hypotheses
during the analysis, and the heterogeneous compound is
considered as being a homogeneous transversally isotropic
one, whose properties can be identified for several fibre-
matrix combinations.

For some fibre-reinforced composites, in [6] it is shown
the existence of a nonlinear relation among stress-strain.
In [7] it is shown that, for the composites epoxy boron-
resin or epoxy bleak lead-resin, the nonlinear behaviour is
due to the matrix composition that mainly affects the shear
module, while the relations stress-strain on the fibres
direction, and also on the transverse direction remain
almost linear.

Methods of analysis of nonlinear relation of constituents
are presented in [8-9].

In [10] it is presented a method for determining the
elasticity coefficient taking into account both constitutive
equations of the components and conditions for continuity
on the separation surfaces for stresses as well as for strains.
Starting from the stresses and strains of the constituents,
we introduced two matrices which characterise the
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average values for the stresses and strains of the
composite. It is thus determined the whole matrix of the
elastic coefficients (not only one coefficient specific to
each single test).

If for the composites with a given orientation of the fibres
there are theories by means of which the mechanical
properties are quite precisely determined, in case of
randomly distributed fibres composites, the theoretical
results may have informative values, experimental
checking being also necessary. A method for determining
the fracture strength for a composite plate with a random
distribution of the reinforcement fibres is presented in [11].
This method consists in the mediation of the fracture
strength when the reference system rotates with a 90°
angle. It is thus obtained a relation for the calculus of the
fracture strength, which is based on an irrational integral,
which depends on the characteristics of the constituents
being difficult to use in current applications.

The fracture strength determination is rendered more
difficult by the introduction of the material’s damage which
may be thought of as surface discontinuities (micro
cracks), or volume discontinuities (micro voids) [12]. The
most common types of damage in fibrous composites are
fibre breakage, fibre/matrix debonding, matrix cracks, fibre
kinking, and for large diameter fibres, radial cracks in the
fibres. The study of these types of damage is made in [13]
and [14], where it is presented a general damage theory
of the laminated composite materials. The theory is based
upon the mean value of the stress in each layer and allows
the damage state to vary from layer to layer in a laminate.
When delamination is of interest [ 15, 6]), damage between
layers is introduced through consideration of damage to
the idealised interfacial layer. In [17], additional
developments of the model were concerned with the
calculation of the intensities of the different damage
mechanisms up to ultimate fracture and extension of the
model to variable temperature ranges [18].

In [19] it is shown that the form of the damage evolution
law generally varies with the type of material, reflecting
the dependence on the micro structural damage
mechanisms. It is expected that the fibre size, micro-
structure and strength, matrix strength and fibre/matrix
interfacial strength all influence damage evolution. The
micro-level damage mechanisms are not identified
explicitly in the model; damage evolution is based on
experimental observations of the response of a damage
layer.

In this sense, the theory is phenomenological, it does
not allow the damage evolution law to change form during
strain when new damage mechanisms occur.

Failure strength

In order to estimate the failure strength of a composite
material, we considered that fibres have an elastic
behaviour until failure, and the matrix has a nonlinear
character in case of exceeding maximum deformation for
the fibres failure. In the case of a unidirectional composite
subjected to tension along the fibres, it is considered that
failure occurs when the fibres fail. The practical results
indicate that the maximum value of medium strain has
lower values than those theoretically obtained in the
previous hypothesis. The explanation consists in the fact
that not all fibres have the same failure strength, some
give in and the intact fibres take over the entire stress.

In case of transversal tension related to the fibres
direction or in case of shear, it is considered that failure
strengths coincide with the matrix failure strength for each
type of stresses. In case of a complex stress state, when
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the tensor of tension has several non zero components,
failure criteria are used. These take into account the size
of each separate tension as well as their correlated effect.

In [11] it is presented a formula for the calculus of the
failure strength for composite materials with randomly
distributed fibres. This formula has the disadvantage that
one should calculate an integral whose value varies
according to the properties of the constituents. In [11] it is
also presented a relation which is used to determine the
maximum value attainable by the failure strength. Starting

from this relation, through the linearity depending on /s, ¢,
it is determined the following formula for the calculation
of the failure strength for composite materials with
randomly distributed reinforcement:

o,=0,1-V)+Vo,0,, M

where o, is the failure strength of the matrix material;
V' is the volume fraction of the fibres; o, is the failure
strength along the fibres of the uniderectional composite
with V proportion of reinforcement; G is the failure strength
in a transversal direction, perpenc'licular to the fibres
direction, of the uniderectional composite with
reinforcement volume fraction.
According to [20], it is accepted that:

o, =0,, 2

E
o, =af[v+(1—v)E—'"], ®)

f

where o, is the fibres failure strength; E _ is the matrix
elastic modulus; E, is the fibres elastic modulus.

Infigure 1is presented the variation of the failure strength
for a composite with polyesteric resin matrix having,
E =1800MPa, c_ = 20MPa, randomly reinforced with
fibreglass having E, = 74000 MPa and o, = 2500MPa
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Fig. 1. Variation of the failure strength for a composite with
polyesteric resin matrix

The elastic modulus

In the case of unidirectional composite materials, the
elastic moduli on two perpendicular axes in the orthotropic
plane are calculated with the relations [20]:
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where 0 is the angle between the considered axes and
the orthotropic axes of the unidirectional composite; E, is
the elastic modulus of the unidirectional composite along
the fibres; E is the elastic modulus of the unidirectional
composite perpendlcular to the fibres; G is the shear
modulus of the unidirectional composite; v, is the Poisson’s
ratio.

Similar to the method presented in [11], we obtain an
averaging formula for the elasticity modulus in the case of
the composite material with randomly dispersed
reinforcement:

)2
—;oj ®)

Since for 6 = 0 we obtain E =E and E = E and for
0=m/2we obtain E =E and E lf it results tllat the elastic
modulus can also be calculated w1th the relation:

)2
E=— Oj E,(6)a6. )

Since the result depends on all the parameters which
appear in the relations (5) and (6) and is difficult to use in
practice, as in the case of failure strength, using the linearity
depending on the term ./E, E, . we obtain:

E=E,(1-V)+VEE,. ®
For the elasticity moduli along the fibres and in

transversal direction on fibre we can use the relations
presented in [12]:

E =E,(1-V)+E,V, ©)
oo EE
‘ m' (10

In figure 2 it is presented the variation of the elasticity
modulus for the same type of composite used for the failure
strength.
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Fig. 2. Variation of the elasticity modulus for the same type of
composite used for the failure strength

Experimental part

The experiments were performed on three different sets
of samples made of polyester resin reinforced with
fibreglass. Table 1 presents the sample characteristics.

The samples were tested to tensile stress until failure.
Table 2 presents the test parameters and the main results
obtained.

In figure 3 is presented one test-piece from each set of
samples which was tested to traction. One can observe
the way in which the fibres failed, and the crack
propagation in section.

Figures 4, 5 and 6 present the characteristic curves
obtained for sample 1, sample 2 and sample 3 respectively.

These diagrams were obtained by determining the
deformation and strain for a number of 121 measurements
for sample 1; 80 measurements for sample 2, and 61
measurements for sample 3.

Results and discussions

The analysis of the stress-strain curves in figures 4, 5
and 6 indicates an almost linear dependency between
strain and deformation. Hooke’s law may therefore be
accepted as valid for composite materials with randomly
distributed reinforcement as well. Consequently, we can
experimentally determine the elasticity modulus for the
composite material with the formula:

Table 1
Order Quantity of Volumetric Test board Test board Distance
number fibres on m? proportion of section area width
(gr) fibres (mm*) (mm) (mm)
Sample 1 100 0,1 14,51 25 334
Sample 2 200 0,15 19,38 25 354
Sample 3 450 0,3 23,15 25 37,7
Table 2
Order Stretching Maximum Elongation Maximum Failure
number speed strain under elongation strength
(mm/min) (KN) maximum (mm) ( N )
strain mm?
(mm)
Sample 1 2,00 0,470 0,999 2,140 32,386
Sample 2 2,00 1,021 1,113 1,426 41,170
Sample 3 2,00 1,565 1,013 1,067 67,605
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in which F is the traction load; [ is the length of the test
board subjected to stretching (the distance between the
grips of the testing machine); A is the sectional area; A is
the elongation of the specimen.

In table 3 it is presented a comparison between
experimental results (for the failure strength and the elastic
modulus) and theoretical ones, calculated with the relations
(1) and (8) respectively.

One observes that the increase in the traction force and
deformation coincides with a decrease of the elastic
modulus under the values presented in table 3. The
composite material thus registers a nonlinear behaviour
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phenomenon, but to a smaller extent, occurs in sample 2,
whereas in the case of sample 3 all fibres can be said to
have given in simultaneously. We may conclude that an
increase in the volumetric proportion of fibres leads to a
more homogeneous distribution of tensions which are
evenly taken over by fibres. If the volumetric proportion of
fibres is small, there is a greater heterogeneity and
therefore areas of the composite material give in, in
different manners.

The increase of the fibres volume fraction also leads to
an increase of the failure strength as well as of the
elongation to fracture and elastic modulus.

In case of composite materials with arandom distribution
of the reinforcement, the failure strength and the elastic
modulus have lower values than in the case of unidirectional
composites. This fact can be explained considering the
smaller amount of fibres that take over the stress with
respect to the total number of fibres disposed in the
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Table 3

Order Volume Experimental results Theoretical results
number fraction of the - - - -
reinforcement Failure Elastic Failure Elastic
strength modulus strength modulus
N (MPa) N (MPa)
(—) (—=)
mm mm . .
Sample 1 0,1 32,38 1976 33,75 2044
Sample 2 0,15 41,17 2225 40,5 2304
Sample 3 0,3 67,61 3714 67,25 3678

composite. Moreover, the percentage of woven fibres is
higher than in the case of composites with the
reinforcement oriented on a given direction.

Since the composite plates with random distribution of
reinforcement are assimilated as having isotropy in the
plate plane, it results that they will have properties closer
to matrix properties. This can be explained by the fact that,
since the fibres modify their direction from one point to the
other, they present a high degree of anisotropy.
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